

Cutting Guides: 3D Osteotomy Planning

Ph Valenti, J Sabbag, M Malessan, N Levy, S Herstik

Institut de la Main
Paris Shoulder Unit
Clinique Bizet, Paris, France

www.shoulder3t.com

Disclosures

Arthroscopy

Consultant + Royalties : VIMS

Consultant: Biomet Zimmer

Arthroplasty

Consultant + Royalties : FH orthopaedic

Custom cutting guides From 3D Model

Custom
Custing guides
From 3D Model

The planned correction is simulated by manipulating the bone models in virtual 3D space

FARIS Custom Cutting guides From 3D Model

A Specific 3D Cutting guide is designed To reproduce exactly the pre op planning

You can predict the holes for screws and plate
With a specific drill cutting guide

> Acta Orthop Belg. 2012 Aug;78(4):538-42.

3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity

Mathias Tricot ¹, Khanh Tran Duy, Pierre-Louis Docquier

Affiliations + expand

PMID: 23019789

Distal humerus malunion

Three patients CT-based 3D planning.
A custom surgical guide and pre-molded plate were created.
Guides were used intraoperatively to perform precise osteotomies.

- All patients regained full elbow mobility
- Conclusion:
 This technique improves surgical accuracy, reduces operating time and incision size, and eliminates the need for intraoperative fluoroscopy.
- Drawbacks include planning time, CT requirement, and cost.

Figure 1. Number of publications relating to 3D printing in upper extremity surgery by year. In *PubMed*, the following search query was used: ("3D" OR "3-dimensional") AND "print*" AND ("upper extremity" OR "upper limb").

- Complex deformities (e.g., malunions, congenital anomalies)
- often require multi-planar corrections which are
 - Time consuming (Blood loss, time of surgery)
 - Dependent of radiation in surgery
 - Dependent on Surgeon experience

Evolution

1st Generation:
 Basic cutting guides

2nd Generation:
 Cutting + reduction guides

3rd Generation

- Integrated with precontoured plates
- Drill hole guidance for screws
- Drill hole guidance for screws to fix the plate
- Templates for bone grafts(e.g., glenoid reconstruction)

Evolution

- •4th Generation: custom made yourself for shoulder arthroplasty
- PSI for glenoid component
- Cutting guide for humeral component

Publications

> Acta Orthop Belg. 2012 Aug;78(4):538-42.

3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity

Mathias Tricot 1, Khanh Tran Duy, Pierre-Louis Docquier

Affiliations + expand

PMID: 23019789

Distal humerus deformities (cubitus varus/valgus)

Case Report Open access Published: 06 September 2023

Use of patient-specific guides and 3D model in scapula osteotomy for symptomatic malunion

Stefano Cattaneo ☑, Marco Domenicucci, Claudio Galante, Elena Biancardi, Alessandro Casiraghi & Giuseppe Milano

3D Printing in Medicine 9, Article number: 24 (2023) Cite this article

2016 Accesses 2 Citations Metrics

Scapular osteotomies for malunions

> Orthop Traumatol Surg Res. 2022 Oct;108(6):102925. doi: 10.1016/j.otsr.2021.102925. Epub 2021 Apr 9.

3D planning and patient-specific surgical guides in forearm osteotomy in children: Radiographic accuracy and clinical morbidity

Marie Benayoun ¹, Tristan Langlais ², Romain Laurent ¹, Malo Le Hanneur ¹, Raphaël Vialle ³, Manon Bachy ¹, Franck Fitoussi ³

Affiliations + expand

PMID: 33845175 DOI: 10.1016/j.otsr.2021.102925

Forearm osteotomies in children (radius/ulna)

> J Shoulder Elb Arthroplast. 2023 Mar 14:7:24715492231162285. doi: 10.1177/24715492231162285. eCollection 2023.

3D Printed Patient-Specific Cutting Guides for Bone Grafting in Reverse Shoulder Arthroplasty: A Novel Technique

Jillian N Karpyshyn 1 , Aaron J Bois 2 3 , Heather Logan 4 , Graeme T Harding 1 , Martin J Bouliane 1

Affiliations + expand

PMID: 36937107 PMCID: PMC10017943 DOI: 10.1177/24715492231162285

Glenoid reconstruction in shoulder arthroplasty

Open Access

Review

Clinical Applications of Three-Dimensional Printing in Upper Extremity Surgery: A Systematic Review

by Andrzej Hecker ^{1,2,3,*} , Lukas Tax ⁴, Barbara Giese ⁴, Marlies Schellnegger ^{2,3}, Anna-Lisa Pignet ^{2,3}, Patrick Reinbacher ⁵, Nikolaus Watzinger ⁴, Lars-Peter Kamolz ^{2,3}, and David Benjamin Lumenta ^{1,2}

"Nevertheless, the preoperative 3D-assisted planning is more time-consuming and costly. The authors estimated that planning 3D-assisted corrective osteotomy takes about 2-4 h per patient, including CT scans from the contralateral side, and an additional cost of USD 2.415 for planning and producing the patient-specific guide"

Posterior Instability With dislocation and recurrent subluxation

Mr TEL. Wa.

AGE: 24 YEARS OLD

DOMINANT SIDE: Right

INJURED SIDE: Left

OCCUPATION: Bookkepper

MEDICAL HISTORY:

Posterior subluxation during

adolescence

SPORT ACTIVITY	competition
TYPE OF SPORT	Вохе
TRAUMA	3 years ago
NUMBER OF DISLOCATION	3
NUMBER OF SUBLUXATION	Several
HYPERLAXITY	NO
PAIN	NO
APPREHENSION	YES

Complete ROM

IMAGING - CT Scan

LEFT RIGHT

Patient			Valeurs de référence			
Epaule	Angle postérieur (°)	AAC (°)	PAC (°)	Angle postérieur (°)	AAC (°)	PAC (°)
		Mesures 3D		posterieur ()		
Gauche	79.7	-19.6	34.9	59	-5	57
Droite	69.8	-17.5	36.3			

> J Bone Joint Surg Am. 2019 Jul 17;101(14):1253-1260. doi: 10.2106/JBJS.18.00541.

Posterior Acromial Morphology Is Significantly Associated with Posterior Shoulder Instability

Dominik C Meyer ¹, Lukas Ernstbrunner ¹, Glenn Boyce ¹, Mohamed A Imam ¹, Rany El Nashar ¹, Christian Gerber ¹

Patient			Etude sur l'épaule saine				
Angle de rétroversion de la glène (°)			Moyenne de l'angle de rétroversion de la glène (°)		•	Littérature épaule saine	
Epaule	2D	3D	Moyenne	1	2D	3D	
Gauche	15.3	14.1	14.7	J	6.7	4.7	Entre 5 et 10°
Droite	13.5	13.2	13.4				

Nyffeler RW, Sheikh R, Atkinson TS, Jacob HA, Favre P, Gerber C.

Effects of glenoid component version on humeral head displacement and joint reaction forces: an experimental study.

J Shoulder Elbow Surg. 2006 Sep-Oct;15(5):625-9. doi: 10.1016/j.jse.2005.09.016. PMID: 16979061.

Posterior Open-wedge Osteotomy and Glenoid Concavity Reconstruction Using an Implant-free, J-shaped Iliac Crest Bone Graft in Atraumatic Posterior Instability with Pathologic Glenoid Retroversion and Dysplasia: A Preliminary Report (2021) Auteurs: Ernstbrunner L, Häller T, Waltenspül M, Wieser K, Gerber C.

POST OP IMAGING – Xray M+4

CLINIQUE _{M+4}

SUMMARIZE CUTTING GUIDES: 3D pre op planning

ADVANDTAGES

- Enhanced accuracy in angular, translational rotational correction
- Shorter operative time
- Less bleeding
- Less radiation
- Less difficulties for the surgeon per op
- Better fit for complex deformities
- Facilitates pre-conturing of plates or grafts

SUMMARIZE C UTTING GUIDES: 3D pre op planning

Limitations

- Higher cost and longer preparation time
- Requires high-quality imaging and segmentation
- Risk of guide misfit if soft tissue interferes or surface anatomy is irregular
- Fragility of printed guides; must ensure correct sterilization
- Workflow not always available in all centers (logistics + expertise)

www.paris-shoulder-course.com

QUINZE MAI

www.15-mai.com

Does It work, is it useful

Research Open access | Published: 29 April 2021

3D-printed saw guides for lower arm osteotomy, a comparison between a synthetic CT and CT-based workflow

Koen Willemsen ☑, Mirte H. M. Ketel, Frank Zijlstra, Mateusz C. Florkow, Ruurd J. A. Kuiper, Bart C. H. van der Wal, Harrie Weinans, Behdad Pouran, Freek J. Beekman, Peter R. Seevinck & Ralph J. B. Sakkers

3D Printing in Medicine 7, Article number: 13 (2021) Cite this article

Objective:

To evaluate MRI-based synthetic CT (sCT) as a radiation-free alternative to CT for designing 3D-printed patient-specific saw guides.

Methods:

Eight cadaveric forearms were scanned with MRI, CT, and micro-CT. sCT models were generated and used to create 3D-printed saw guides, which were placed on bones by blinded observers. Placement accuracy was compared to CT-based guides using 3D scans.

Results:

No significant differences in placement errors between sCT- and CT-based guides. Model accuracy was comparable to micro-CT.

Conclusion:

sCT is a promising, radiation-free alternative to CT for surgical guide planning

> Orthop Traumatol Surg Res. 2022 Oct;108(6):102925. doi: 10.1016/j.otsr.2021.102925. Epub 2021 Apr 9.

3D planning and patient-specific surgical guides in forearm osteotomy in children: Radiographic accuracy and clinical morbidity

Marie Benayoun ¹, Tristan Langlais ², Romain Laurent ¹, Malo Le Hanneur ¹, Raphaël Vialle ³, Manon Bachy ¹, Franck Fitoussi ³

Affiliations + expand

PMID: 33845175 DOI: 10.1016/j.otsr.2021.102925

Free article

Objective:

To evaluate the reliability and outcomes of 3D planning and patient-specific surgical guides in pediatric forearm osteotomies.

Methods:

23 children (48 osteotomies) were retrospectively analyzed: 9 with guides (G+), 14 without (G-). Mean age: 14.8 years. Guides were 3D-printed from CT-based models. Mean follow-up: 22.1 months.

Results:

- Correction accuracy (G+): 5.3° (frontal), 4.2° (sagittal)
- Surgery time: 42 min shorter in G+ (p=0.02)
- Radiation dose: Higher in G+ (p<0.0001)
- Complications: Similar
- PRWE improvement: Greater in G+

Conclusion:

3D planning with patient-specific guides is a reliable and effective technique for correcting pediatric forearm deformities.

► BMC Musculoskelet Disord. 2018 Oct 15;19:374. doi: 10.1186/s12891-018-2279-0 [2]

Improving accuracy of opening-wedge osteotomies of distal radius using a patient-specific ramp-guide technique

Simon Roner ^{1,⊠}, Fabio Carrillo ¹, Lazaros Vlachopoulos ², Andreas Schweizer ², Ladislav Nagy ², Philipp Fuernstahl ¹

► Author information ► Article notes ► Copyright and License information

PMCID: PMC6190568 PMID: 30322393

Original Article

3D printing-assisted percutaneous fixation makes the surgery for scaphoid nonunion more accurate and

less invasive

Show more ∨

Editor's choice

Conventional Versus Computer-Assisted Corrective Osteotomy of the Forearm: aRetrospective Analysis of 56 Consecutive Cases

Show more

Conclusions

The results demonstrate that the computer-assisted method facilitates shorter operation times while providing similar clinical results.

Open Access

Review

Clinical Applications of Three-Dimensional Printing in Upper Extremity Surgery: A Systematic Review

by Andrzej Hecker ^{1,2,3,*} , Lukas Tax ⁴, Barbara Giese ⁴, Marlies Schellnegger ^{2,3}, Anna-Lisa Pignet ^{2,3}, Patrick Reinbacher ⁵, Nikolaus Watzinger ⁴, Lars-Peter Kamolz ^{2,3} and David Benjamin Lumenta ^{1,2}

"Nevertheless, the preoperative 3D-assisted planning is more time-consuming and costly. The authors estimated that planning 3D-assisted corrective osteotomy takes about 2-4 h per patient, including CT scans from the contralateral side, and an additional cost of USD 2.415 for planning and producing the patient-specific guide"

Does It work, is it useful

Research Open access Published: 29 April 2021

3D-printed saw guides for lower arm osteotomy, a comparison between a synthetic CT and CT-based workflow

Koen Willemsen ☑, Mirte H. M. Ketel, Frank Zijlstra, Mateusz C. Florkow, Ruurd J. A. Kuiper, Bart C. H. van der Wal, Harrie Weinans, Behdad Pouran, Freek J. Beekman, Peter R. Seevinck & Ralph J. B. Sakkers

<u>3D Printing in Medicine</u> **7**, Article number: 13 (2021) <u>Cite this article</u>

Objective:

To evaluate MRI-based synthetic CT (sCT) as a radiation-free alternative to CT for designing 3D-printed patient-specific saw guides.

Methods:

Eight cadaveric forearms were scanned with MRI, CT, and micro-CT. sCT models were generated and used to create 3D-printed saw guides, which were placed on bones by blinded observers. Placement accuracy was compared to CT-based guides using 3D scans.

Results:

No significant differences in placement errors between sCT- and CT-based guides. Model accuracy was comparable to micro-CT.

• Conclusion:

sCT is a promising, radiation-free alternative to CT for surgical guide planning

> Orthop Traumatol Surg Res. 2022 Oct;108(6):102925. doi: 10.1016/j.otsr.2021.102925. Epub 2021 Apr 9.

3D planning and patient-specific surgical guides in forearm osteotomy in children: Radiographic accuracy and clinical morbidity

Marie Benayoun ¹, Tristan Langlais ², Romain Laurent ¹, Malo Le Hanneur ¹, Raphaël Vialle ³, Manon Bachy ¹, Franck Fitoussi ³

Affiliations + expand

PMID: 33845175 DOI: 10.1016/j.otsr.2021.102925

Free article

Objective:

To evaluate the reliability and outcomes of 3D planning and patient-specific surgical guides in pediatric forearm osteotomies.

Methods:

23 children (48 osteotomies) were retrospectively analyzed: 9 with guides (G+), 14 without (G-). Mean age: 14.8 years. Guides were 3D-printed from CT-based models. Mean follow-up: 22.1 months.

Results:

- Correction accuracy (G+): 5.3° (frontal), 4.2° (sagittal)
- Surgery time: 42 min shorter in G+ (p=0.02)
- Radiation dose: Higher in G+ (p<0.0001)
- Complications: Similar
- PRWE improvement: Greater in G+

Conclusion:

3D planning with patient-specific guides is a reliable and effective technique for correcting pediatric forearm deformities.

► BMC Musculoskelet Disord. 2018 Oct 15;19:374. doi: 10.1186/s12891-018-2279-0 [2]

Improving accuracy of opening-wedge osteotomies of distal radius using a patient-specific ramp-guide technique

Simon Roner ^{1,™}, Fabio Carrillo ¹, Lazaros Vlachopoulos ², Andreas Schweizer ², Ladislav Nagy ², Philipp Fuernstahl ¹

► Author information ► Article notes ► Copyright and License information

PMCID: PMC6190568 PMID: 30322393

Original Article

3D printing-assisted percutaneous fixation makes the surgery for scaphoid nonunion more accurate and

less invasive

Show more ∨

Editor's choice

Conventional Versus Computer-Assisted Corrective Osteotomy of the Forearm: aRetrospective Analysis of 56 Consecutive Cases

 $\underline{\mathsf{David}}$ Ephraim Bauer MD * $\underline{\mathsf{A}}$ $\underline{\mathsf{MD}}$, Stefan Zimmermann MD *, Alexander Aichmair $\underline{\mathsf{MD}}$ *, Andreas Hingsammer MD *, Andreas Schweizer MD *, Ladislav Nagy MD *, Philipp Fürnstahl PhD †

Show more

Conclusions

The results demonstrate that the computer-assisted method facilitates shorter operation times while providing similar clinical results.